Project Description

The objectives of the study are to provide an analysis, condition assessment and cost estimate for the rehabilitation of the Old Baptist Hospital in Louisville, Kentucky. Louisville Metro Government has issued a Request for Proposals (Solicitation of Interest: 768, 810 and 850 Barret Avenue, 1235 E. Breckinridge and 814 Vine Street - Urban Government Center) from developer teams in order to determine the potential reuse of the site and historic buildings. This report focuses predominantly on the reuse of the existing historic portions of the buildings. Project scope included assessing the building’s condition and integrity of historic fabric, recommending appropriate treatments, testing reuse options through the development of schematic floorplans, and developing cost estimates based on the treatment recommendations and reuse options.

Building Description

The Old Kentucky Baptist Hospital building is composed of a seven-story central structure with wings extending north and south from both east and west ends, as well as an original center wing that extends south. A single-story addition infills the area between the east and west wings on the north side. On the south side, a two-story addition infills the area between the west and central wings and a single story additional infills the area between the east and central wings. Windowless stair towers dominate the south elevations of the west and central wings and an imposing elevator tower is centered on the north elevation of the central mass.

The structure is concrete frame with hollow clay tile infill walls. The exterior is clad in brown and orange brick and features several limestone string courses. The brick on the older central mass is mottled in appearance and features more dark brown brick, while the newest addition, the south extension of the east wing, carries a lighter orange brick and no stone string courses. Interior walls are plaster or gypsum board.

All roofs are concrete with built-up roofing and pebble ballast. Roofs are enclosed by brick parapet walls with limestone coping. In some places the parapets exceed six feet in height. The north elevation of the 1924 building features parapet walls with limestone balustrades. Roofs slope to perimeter drains with metal downspouts on the east, south, and west elevations.

The building’s windows, though modern fixed-light with lower hopper, reveal the arrangement of spaces within the building; the smallest windows indicating a bathroom or similar function, the largest
windows a sunroom, and mid floor windows a stairwell. The most common window size generally indicates a single room, though modern changes to interior spaces have altered this correlation to some degree.

The ground floor is partially below grade. The original formal entry to the hospital was from a raised portico on the second level of the north elevation. The existing front entrance remains on the north elevation but is through the ground level one-story addition. A glass-walled vestibule opens up to a lobby area with walls clad in polished cream colored travertine. A warren of corridors and offices extend out in all directions from the lobby. Upper floors are fairly regularly arranged as double-loaded corridors, roughly 7’ 9” wide, with 14’ deep spaces on either side.

There are several stairs in the building, including one main stair in the 1924 portion with decorative newel and rail and four stairs with metal newel and rail in the 1940s/50s portions of the building. There is a sixth stair in the 1960s building and two non-historic metal stairs in stair towers on the south elevation of the west and central wings. A second stair in the 1924 building has been removed and replaced by a vertical stack of electrical equipment rooms.

Floors are generally composed of terrazzo with a coved transition to a terrazzo base. Plaster walls have a highly figured texture. Door frames are steel and some show evidence of infilled transoms. Interior doors range in materials, with many that are located in historic openings featuring rounded lower corners to accommodate the coved terrazzo. Ceilings are predominantly acoustical ceiling tile (ACT). In rooms, the ACT ceilings are hung roughly 12-inches below historic plaster on metal lath ceilings which are hung another 12-inches from the concrete structure. Historic corridor ceilings are directly on structure with modern ACT ceilings hung roughly two feet lower.

Sharing the site with the hospital is a small complex of historic maintenance buildings and a modern building connected to the hospital by an enclosed pedestrian bridge. The remainder of the site is impervious parking, lawns, and several mature trees.

Figure 1: Kentucky Baptist Hospital, January 2017.
Developmental History

The Kentucky Baptist Hospital opened in 1924. The Neoclassical building was originally a seven-story rectangular mass with six stories of sun porches on its east and west elevations and a central wing projecting from the south elevation. A raised, single story columned portico accented a slightly projecting center.

Figure 2: Kentucky Baptist Hospital shortly after completion, no date.
Figure 3: Kentucky Baptist Hospital, no date.

Figure 4: Children patients in front of the hospital's original entrance, no date.
Beginning in the mid-1940s, the hospital began planning for an expansion that would more than double the building’s square footage. Plans for new seven-story wings, projecting north from the east and west ends of the building were approved in 1948. An additional level was added to the original stack of porches, completing them as hyphen connections to the new wings. The plans also show a new ground level addition of kitchen and dining facilities extending west from the central wing to the extents of the new west wing. In October of 1952, the Louisville Courier Journal reported that an additional wing was completed. This wing filled out the floors above the kitchen, thereby extending the west wing south.
While the additions of the late-1940s and early 1950s greatly expanded the size of the hospital, they were sympathetically designed with similar brick cladding and limestone details. Historic photographs and physical evidence suggest that very little of the earlier building was altered to accommodate the new additions.

Figure 7: Kentucky Baptist Hospital rooftop activity area, above west wing, August 13, 1953.

Figure 8: Kentucky Baptist Hospital, no date. Note rooftop activity area on roof to right.
Additions completed between 1963 and 1965 sought to modernize the building; adding ground floor and second floor offices, a ground floor lobby, and an elevator tower to the building’s primary façade, as well as a new seven-story addition to the south elevation of the east wing. The nurse’s home building, said to have been a century old at the time, was demolished to make way for this new addition.

In 1971, a new Baptist Hospital was being planned in the St. Matthews suburb of Louisville. In 1988, after years of underuse by the hospital, the Jefferson County Government purchased the Barret Street building. At the end of 2016, the building was completely vacated by government offices.
Figure 11: Development History.

(Asterisks) indicate speculative date of construction
Summary of Historic Character-Defining Features

Character-Defining Features are those salient historic features that together make up the historic structure and comprise the historic integrity of a building or site. They are elements that should be retained and treated according to the Secretary of Interior Standards for Preservation in order for the structure to be considered for placement on the National Register of Historic Places or considered for any historic tax credit projects. The extant Character-Defining features of these buildings include:

- Exterior limestone details and mottled brown brick
- Terrazzo floors and coved base in both the 1924 building and 1948/52 additions
- Chair rail found in some of the former porch rooms
- One remaining original window found on 2nd floor east porch
- Plaster walls
- Stairs, railing, newel posts
- Historic bathroom located on FP03 (“Second Floor”) east wing of 1924 building, north side.
- Iron balconettes on north elevation (2)

Eligibility for Historic Tax Credits and National Register Status

While the building has lost many of its historic interior features and has suffered losses and damage to its historic exterior elements, some significant components remain and the overall form and style of the building can be clearly read and understood as historically important. Further, significance can also be found in the building’s historic associations with the surrounding community and the role it has played in the lives of many of Louisville’s citizens and in the development of the Paristown Pointe neighborhood. This report focuses on recognizing the 1924 and 1948/1952 portions of the complex as historically significant based on their significance to the community and architectural integrity.

The Secretary of the Interior’s Criteria for Evaluation of Historic Significance is the metric upon which the building would be evaluated to determine its eligibility for listing the National Register of Historic Places, a requirement of the Historic Rehabilitation Tax Credit (HRTC). Conversations with the Kentucky State Historic Preservation Officer (SHPO) suggest that this agency will be supportive of efforts to nominate the property. This process would be initiated through a request for a determination of eligibility which is found within the Part A documents of the HRTC application forms.
Condition Assessment

On January 19-20, 2017, an assessment team of a preservation planner, Charles Lawrence, and preservation architect, Karen Gravel, AIA, from Lord Aeck Sargent observed and recorded adverse conditions on exterior and interior spaces of the Old Baptist Hospital Building. The team identified the 1924 and 1948/52 portions of the complex to be the historically significant and excluded the 1960s addition and freestanding building in the assessment process. The latter addition and building were identified as non-contributing to the historic significance of the former hospital building. The following pertains only to the 1924 building and 1948/52 additions.

While a full structural engineering assessment was not undertaken, no outwardly visible signs of structural failures were observed. Where elements of the concrete frame are visible, no significant concerns were noted in the field assessment. Minor step cracking, face-spalling of exterior brick, and horizontal separation in brick joints were noted, but are not related to structural concerns.

Figure 12: Existing exterior conditions.
The predominant issue affecting the building is a failing roofing. Water damage and active leaks related to failed roofing are present throughout the building, but especially concerning on levels directly below a roof. The built-up ballasted roofing and associated flashing and sealing on all roofs have outlived their useful life and require complete replacement.

Wall assemblies, exterior and interior, are in stable condition. Interior walls of the corridors and stairwells, exterior-facing walls, and some partition walls are predominantly plaster on masonry or metal lath. Aforementioned water damage most significantly affects interior and exterior-facing walls on the top floors of the building, as well as walls below intersections of lower roofs and exterior walls. As noted above, select areas of exterior walls exhibit minor step cracking, face-spalling of exterior brick, and horizontal separation in brick joints. These conditions appear to be related to either rusting shelf angle window headers or, in the case of the separation of horizontal brick joints noted in the elevator towers of the 1940s additions, from rust jacking of the shelf angle associated with the tower floor slab. Exterior walls will require minor repointing to damaged areas.

The existing painted plaster finish on interior walls does not appear to be original. Evidence suggests though, that the 1924 plaster finish was also highly textured. Drawings from 1948 indicate flat plaster and Keene’s Cement finishes in some rooms. Plaster walls should be retained and repaired as needed.

Figure 13: Existing interior conditions.

This original restroom on the third floor of the 1924 building illustrates the character of the original structure.

This is the one remaining original double hung wood window in the 1924 building.

Coved terrazzo bases are one of the remaining character defining features of the building.
The exterior walls feature limestone details that have been partially demolished to make openings for HVAC vents. These details shall either be infilled or reconstructed. In a few areas, the limestone features are cracked or damaged from other causes. These areas are stable but require minor patching repairs. For the purpose of this report and estimate, these details are included to be repaired per the Secretary of Interior Standards for Preservation.

The primarily terrazzo floors are in stable condition and show few signs of damage or age. Where cracks are present, the floors should be filled with an appropriate epoxy terrazzo repair material.

Ceilings throughout the building are modern acoustical tile hung roughly two feet from the concrete structure. Original plaster-on-metal lath ceilings are largely demolished.

Modern widows show signs of failed sealant. These windows are aesthetically inappropriate for the building and are not repairable. All modern windows shall be replaced with historically appropriate windows to match the original double hung configuration.

Figure 14: Detail and material conditions.
Scope of Improvements

The design team identified potential scope of improvements essential for rehabilitation of the historical buildings. Corresponding cost estimates (Appendix) were developed which reflects the assumptions and scope of work identified in the following narratives. Square footage costs are based on historical data on similar projects. More specific costs were developed for the specialized repair of stone, brick and replacement material.

The scenario of preserving and restoring only the 1924 (central) portion of the building was considered, but yielded a very low amount of units per floor. The work would require additional and significant demolition from what is recommended and would also require the additional reconstruction of the east and west exterior walls of the former porches on top of the reconstruction already proposed. It appears that this scenario would not be feasible from a return on investment perspective. Further, considering the aesthetic qualities of the 1940s and 50s additions and the criteria under which the property is evaluated, the additions are considered contributing to the overall historic significance of the property.

Selective Demolition

The complex of buildings has evolved over time. For the sake of this study, all buildings and additions constructed after 1952 will be removed. This includes a 7-story 1960s addition to the south side of the building, the first floor 1960s addition to the front of the building, the 1960s elevator tower added to the front elevation of the building and the later one and two story additions at the rear of the building.

There are several roof top structures that should be rebuilt.

With the exception of the corridor walls, most interior walls and ceilings will be demolished for new layouts.

A hazardous materials survey has been completed by the Louisville Metro Government.
Figure 15: Demolition Plan.
Site Preparation
The building is existing. There will be extensive removal of existing buildings and footings. The site around the building will need to be regraded and landscaped with a mix of hardscape and plantings. See diagrams for extent of building removal.

Site Utilities
There are existing water, gas, electrical and data service to the building. Existing utilities within the building will be removed and replaced. A new electrical service will be provided to the complex via underground duct banks. The cost estimates holds an allowance for this work.

Other Site Construction
There are maintenance and out-buildings that are not being removed at this time. They will be eligible for rehabilitation in the future. These structures are not included in this study or pricing exercise, but should be carefully considered for amenity spaces, support facilities and for restaurant and shop space.

Site Improvements
This study assumes there will be improvements to the landscape, hardscape and parking in very general terms. The design team assigned percentages of hardscape, parking and landscape to the defined site and enumerated their budgets as separate line items.

Foundations
During the addition and reconfiguration of the building in the 1960s, a large majority of the first floor and the front elevation was removed and replaced. It is recommended that the entire first floor exterior wall on the north elevation should be rebuilt to a condition similar to the historic condition (i.e. exterior brick cladding, stone string courses, historic window locations and sizes) but not strue to replicate it. Any new additions should be compatible yet distinct from the original construction. Portions of the exterior wall on the south side of the building will need to be rebuilt. Assume new spread footings to be constructed to support the new wall under the existing walls. See diagram of wall reconstruction.

Figure 18: Area of Reconstruction.
The single story wall replacement is priced to include a cmu wall with insulation, wall ties and brick façade. Windows shall match existing in size and include cast stone sills.

The double story wall replacement should include cmu wall with insulation, wall ties and brick façade. Windows shall match existing in size and include cast stone sills.

The seven story wall replacement on the rear of the building is priced to include cmu wall with insulation, wall ties and brick façade. Windows shall match existing in size and include cast stone sills.

The seven story wall replacement on the front of the building should be reconstructed to look similar to the original wall and porch configuration. The single story portions that have been removed should also be reconstructed in a similar fashion to the historic configuration.

Basement Construction

There is a very limited basement. Assume limited patching and cleaning in the 200 s.f. area.

Superstructure

The concrete frame structure is in good condition with limited exceptions. There some evidence of water infiltration on the 7th floor at the roof level. While not all areas were accessible this report assumes that there will be approximately 300 square feet of concrete patching at the roof level.
Where additions are removed, the structure will need to be capped and the open walls prepared for a new exterior enclosure.

Exterior Enclosure
- **Cast Stone Repair** – There are areas where the stone has been removed or cut out on the façade to accommodate mechanical equipment. This report assumes the conditions will be repaired in keeping with the Secretary of Interior’s Standards for Preservation.
- **Replace Windows** – Replace windows with new double pane 1 over 1 historic replica windows from wood. See schedule quantity, type, sizes and area. There is one existing historic wood double hung window that serves as a basis of design for any new windows.
- **Stone Copings** – New sealant in all sky-facing joints and minor repairs will be necessary.
- **Mortar Joints** – Repoint all stone string course horizontal and vertical joints on 1924 building.
- **Minimal additional repointing. Assume 5% of brick surface area to be repointed.**
- **Additional exterior enclosure:**
 - Loss of mortar in horizontal bands at floor slab levels in all stair/elevator tower elevations and face spalling brick at window headers indicates rust jacking of shelf angles. Clean and recoat metal shelf angles, repoint joints – 600 ln. ft.
 - Inappropriate mortar at 1940s building and 1924 building connection, southeast 2nd, 3rd, and 5th floors – remove Portland cement mortar replace with appropriate mortar – 100 ln. ft.
 - Balconette railings are rusted – clean and recoat two steel balconette railings on North elevation.
 - Clean biological staining at all existing downspouts. Clean building.

Roofing
- All roofs will receive new roofing. Assume a 3-ply modified bitumen roofing system with new copper flashing on all roofs.
- Replace all downspouts. Approximately eight copper downspouts at 6-inch and 85’ in height.

Interior Construction
- New partition walls are to be gypsum wall board walls on both sides.
- Any new exterior walls gypsum wall board.
- Replace the handrail on the wall side of each stair with code compliant rail.
- Replace 5” by 5” marble tile newel cap at 10 locations.

Interior Finishes
Protect and maintain the terrazzo floors. Allow for limited patching of interior. All unit finishes to be standard grades for apartment buildings.

Equipment
Casework shall be laminate with stone surfacing in bathrooms and kitchens.

Furnishings
Furnishing budget is separate from the construction budget and not included at this time.
Conveying Systems
Replace all existing elevators with new elevators in existing shafts. Assume the shafts will require some repair.

Fire Protection Systems
The building will be completely sprinklered.

Plumbing Systems
All new plumbing systems for the building.

HVAC Systems
Given that the probable program will be multifamily, the assumption is that the systems will be Typical multifamily mechanical is a split system with rooftop condensers and air handlers in a closet in each unit. 2 ton units at 1br and 2.5 ton units at 2br units.

Typically one bedroom units have 40 gallon water heaters, and two bedroom units get 50 gallon water heaters.

Electrical Systems
Assume new electrical service to the building to support residential use.

IT Systems
Provide budget for replacing all IT infrastructure for the entire building. For apartments assume 3 wired drops.

Security / Video Cameras
Assume there will be a budget for secure entrances and monitoring with at least 12 cameras will be installed around the building and hard wired back to a central security office.

Building Layout Test Fits
The design team explored different ways that the building could be reconfigured to accommodate housing units on each floor. The plans in the following pages represent apartment and hotel layouts. The concept includes maintaining the terrazzo floor and corridor widths because these are one of the few remaining interior character defining features of the building. The units are configured between the corridor and exterior walls. Depending on the unit mix, there may be more or less of one unit type. These test fits help illustrate the yield per floor of the building as noted on the plans.
APARTMENT LAYOUT TEST FIT

TYPICAL FLOOR PLAN
Number of apartments = 16
1-Bedroom = 9
2-Bedroom = 7

1-Bedroom 2-Bedroom
6 4
3 3
HOTEL LAYOUT TEST FIT

TYPICAL FLOOR PLAN
Number of rooms per floor = 38

- 23
- 15
Cost Estimates

Louisville Metro Government

Old Baptist Rehabilitation

Prepared: February 14, 2017

<table>
<thead>
<tr>
<th>Item</th>
<th>$/GSF</th>
<th>% Construction</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selective Demolition</td>
<td>Building Demolition</td>
<td>112,948 GSF</td>
<td>$9.20</td>
</tr>
<tr>
<td></td>
<td>Interior Demolition</td>
<td>158,133 GSF</td>
<td>$5.68</td>
</tr>
<tr>
<td></td>
<td>Hazardous Material Abatement (excluded)</td>
<td>0 GSF</td>
<td>$0.00</td>
</tr>
<tr>
<td>Site Preparation</td>
<td>26,594 SY</td>
<td>$4.00</td>
<td>0.3%</td>
</tr>
<tr>
<td>Site Utilities</td>
<td>Allowance</td>
<td>1 LS</td>
<td>$100,000</td>
</tr>
<tr>
<td>Site Improvements</td>
<td>Hardscape</td>
<td>33,450 SF</td>
<td>$12.50</td>
</tr>
<tr>
<td></td>
<td>Parking (Existing)</td>
<td>75,600 SF</td>
<td>$1.00</td>
</tr>
<tr>
<td></td>
<td>Parking (New)</td>
<td>49,700 SF</td>
<td>$5.00</td>
</tr>
<tr>
<td></td>
<td>Landscape</td>
<td>156,200 SF</td>
<td>$3.50</td>
</tr>
<tr>
<td></td>
<td>Foundations</td>
<td>158,133 GSF</td>
<td>$0.50</td>
</tr>
<tr>
<td></td>
<td>Superstructure</td>
<td>158,133 GSF</td>
<td>$0.75</td>
</tr>
<tr>
<td>Exterior Enclosure</td>
<td>Stone Repair</td>
<td>1,115 CF</td>
<td>$175.00</td>
</tr>
<tr>
<td></td>
<td>Windows (Remove & Replace or Restore)</td>
<td>16,752 SF</td>
<td>$80.00</td>
</tr>
<tr>
<td></td>
<td>Miscellaneous Exterior (clean existing)</td>
<td>88,185 SF</td>
<td>$4.00</td>
</tr>
<tr>
<td></td>
<td>Rebuild Exterior Facades</td>
<td>15,538 SF</td>
<td>$50.00</td>
</tr>
<tr>
<td></td>
<td>Rebuild North Façade</td>
<td>6,213 SF</td>
<td>$75.00</td>
</tr>
<tr>
<td>Roofing</td>
<td>22,590 SF</td>
<td>$32.50</td>
<td>2.2%</td>
</tr>
<tr>
<td>Interior Construction & Finishes</td>
<td>158,133 GSF</td>
<td>$40.58</td>
<td>18.9%</td>
</tr>
<tr>
<td>Furnishings & Equipment</td>
<td>158,133 GSF</td>
<td>$5.22</td>
<td>2.4%</td>
</tr>
<tr>
<td>Elevators</td>
<td>remove & replace</td>
<td>28 stops</td>
<td>$35,000</td>
</tr>
<tr>
<td>Fire Protection</td>
<td>including Fire Pump</td>
<td>158,133 GSF</td>
<td>$3.77</td>
</tr>
<tr>
<td>Plumbing Systems</td>
<td>158,133 GSF</td>
<td>$9.44</td>
<td>4.4%</td>
</tr>
<tr>
<td>HVAC Systems</td>
<td>158,133 GSF</td>
<td>$18.08</td>
<td>8.4%</td>
</tr>
<tr>
<td>Electrical Systems</td>
<td>158,133 GSF</td>
<td>$19.07</td>
<td>8.9%</td>
</tr>
<tr>
<td>Communications</td>
<td>158,133 GSF</td>
<td>$2.50</td>
<td>1.2%</td>
</tr>
<tr>
<td>Electronic Safety & Security</td>
<td>158,133 GSF</td>
<td>$3.50</td>
<td>1.6%</td>
</tr>
<tr>
<td>CM Mark-up</td>
<td>158,133 GSF</td>
<td>$31.15</td>
<td>20.0%</td>
</tr>
<tr>
<td>Contingency</td>
<td>158,133 GSF</td>
<td>$28.04</td>
<td>15.0%</td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0.00</td>
<td>0.0%</td>
</tr>
<tr>
<td>Furnishings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0.00</td>
<td>0.0%</td>
</tr>
<tr>
<td>Communications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0.00</td>
<td>0.0%</td>
</tr>
<tr>
<td>Design, Testing/Related Costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0.00</td>
<td>0.0%</td>
</tr>
<tr>
<td>Development Costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0.00</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
Total Project Budget (Pre-Design)

<table>
<thead>
<tr>
<th>Item</th>
<th>$/GSF</th>
<th>% Construction</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Owner's Costs</td>
<td>$0.00</td>
<td>0.0%</td>
<td>$0</td>
</tr>
</tbody>
</table>

Total Project Budget

- **158,133** GSF
- **$214.94**
- **100.00%**
- **$33,988,773**

Funds Available

- **$0.00**
- **$0**

Variance

- **$214.94**
- **0.00%**
- **$33,988,773**

Alternates:

Notes:

1. Items referenced as an "Allowance" are applicable to the project and included in construction costs although their scope is currently undefined.
2. Items referenced as "NIC" may be applicable to the project but are not included in construction costs.
3. Items referenced as "NA" are not applicable to the project and are not included in construction costs.
4. Escalation, if included, is applied from the date of this budget to the mid-point of construction at a rate of 3.0% annually.
5. Construction budget is based on specifications and drawings dated.................